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On the flux of heat through laminar wavy liquid layers 
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Dynamically passive transfer of heat across a layer of liquid supporting a pro- 
gressive, periodic surface wave is approached from a Lagrangian viewpoint. The 
model layer considered is the region between two constant pressure surfaces of a 
Gerstner wave and the thermal boundary conditions are that the average tem- 
perature of any surface particle remains constant and that there is horizontal 
homogeneity of the average temperature field. 

It is shown that fluctuations in the temperature of any particle are negligibly 
small for ordinary liquids and a uniformly valid approximation to the average 
temperature of each particle is presented. 

The extent to which the flux of heat through the layer is augmented is com- 
puted for typical cases and it is shown to be at  most doubled. Indication is given 
of extensions of the method to other kinds of progressive waves and to situations 
in which the boundary conditions are unsteady and spatially inhomogeneous. 

1. Introduction 
Surface distortions of the progressive wave type on a layer of fluid can be 

expected to effect the flux of heat or any other scalar quantity through the layer 
in at least two ways. First, conductive transfer is sensitive to the geometry of 
the layer, and second, there will be some convective transfer in the body of the 
layer. This investigation presents a method of accurately estimating such fluxes. 

The practical significance of the problem has long been recognized by those 
interested in heat transfer estimates. For example, McAdams (1954) apparently 
recommends as much as a 20 yo increase in heat flux through condensing films 
on vertical tubes when the film shows wavy characteristics as compared to the 
same film in a non-wavy state. 

For the sake of definiteness we restrict our terminology to the transfer of heat 
and we consider a specific boundary value problem in two space dimensions. An 
important simplification that we adopt is to neglect both buoyancy induced 
motion and property variation with temperature. That is, the temperature field 
T is taken to be dynamically passive. It has no effect on the velocity field ui of the 
progressive wave, which must therefore be part of the given data of the problem. 
Even with this assumption and the neglect of dissipative heat generation the 
solution of the energy equation is not a trivial one, as we shall show, because of 
the complexity of the velocity field associated with progressive waves. Mass 
transfer across the bounding surfaces of the fluid is not permitted and thus the 
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boundaries will be material surfaces. It is therefore natural to consider a Lagran- 
gian formulation of the heat transfer problem, and for the sake of studying the 
simplest situation the thermal boundary conditions will be that the average 
temperature of each particle on the upper surface is a constant TI ,  and the average 
temperature of each particle on the lower surface is also a constant, T, (Tl + T,). 

One simple description, in Lagrangian form, of the kinematics of a layer sup- 
porting a finite amplitude progressive wave is the Gerstner solution to the in- 
compressible, inviscid, hydrodynamic equations and we will adopt this particular 
wave solution to describe the fluid layer. The analytic description of the Gerstner 
wave is presented in 5 2 and a graphical description of one wavelength of the wave 
is displayed in figure 1. The wave is periodic and is progressing with a velocity c. 
The fully inked-in lines of constant p in  figure 1 are samples of constant pressure 
surfaces in the solution. p is a non-dimensional Lagrangian co-ordinate to be 
defined in § 2. We point out here that we consider any region between two constant 
pressure surfaces to be a possible layer to which our solution will apply. 
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FIGURE 1. The Gerstner wave. - - -, normalized temperature profiles (To(/3) - T,)/(T, - T2). 

As far as the transport of heat is concerned, the Gerstner wave is expected to 
be kinematically typical of those progressive waves in which there is little 
particle drift and for which the particle orbits grow larger monotonically as one 
approaches the upper surface. In  fact it  has been shown elsewhere (O'Brien 1965), 
by adopting the solution procedure reported in this paper to the case of a shallow 
gravity wave, that the temperature profile for a Gerstner wave is indistinguish- 
able from that for a shallow gravity wave under the same thermal boundary 
conditions provided that the ratios of amplitude-to-depth and amplitude-to- 
wavelength are the same for both waves. 

2. Energy equation for the Gerstner wave 
The Gerstner wave is an exact solution of the inviscid, incompressible, hydro- 

dynamic equations presented in terms of Lagrangian variables a and b. The 
trajectory of any particle whose material co-ordinates are a and b is given by 
Lamb (1945) as 

%(a, b,t) = a+k-lekbsink(a+ct), y(a,  b,t) = b-k-lekbcosk(a+ct), (2.1) 
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where x and y are Eulerian position co-ordinates, c is the wave speed, c = gfr k t ,  
and k: the wave-number. Thus a physical interpretation of (a,  b )  is that it is the 
centre of the circle in which the particle moves. 

The Jacobian of the transformation, J = [a(z, y)]/[a(a, b)] ,  is 1 - e2kb from 
which it is seen that b can have all values less than zero. The Gerstner wave has 
considerable analytical advantages over other kinds of wave solutions; its 
Jacobian is time independent and, within the approximation to be developed in 
$3, a closed form solution to the temperature field can be obtained for all ampli- 
tudes, wavelengths and depths that Gerstner waves can exhibit. 

When (2 .1)  is written in non-dimensional form by means of the transformations 
a = ka, /3 = kb and 7 = kct, the energy equation, which has the Eulerian form 
(8Tjat) + ui(8T/axi) = DA2T, becomes 

T7(a,,8,7) = c-1DkJ-2{[1+e2P-2e~cos(a+~)]Taa 

+ [ 1 +  e21 + 2eP cos (a  + 7)]TPP - 4eP sin (a + 7)TaP 

-4e2b(1 -e2b)-1sin(a+7)Ta+4e2P(1-ee2P)-1[1 + e ~ c o s ( a + ~ ) ] T ~ ) ,  (2 .2 )  

where subscripts refer to partial derivatives. For example 

T~~ = avlaaap. 
The boundary conditions are 

p(pl) = Tl a constant, (2.3) 

p(p2)  = T, a constant, (2 .4 )  

where /3 = is the upper surface, p = p, is the lower surface, and F means the 
average temperature, the average to be taken over either a wavelength or a wave 
period. 

(2 .2)  is a linear partial differential equation with coefficients that depend on 
all three independent variables. The Eulerian form of the energy equation is of 
course of just the same type but the Lagrangian form has several advantages. 
The boundary conditions for the quasi-steady situation are of the simplest kind 
and more significantly a natural perturbation analysis suggests itself from this 
viewpoint. The perturbation scheme makes use of the fact that the parameter 
(DlC)/c is extremely small for ordinary liquids except for waves of very large 
wave-number. In  fact if surface tension is to be included this parameter would be 
small for all wave-lengths since c ( k )  then exhibits a minimum. The smallness of 
this ratio suggests the fact that in the time-scale of one period the diffusive loss 
or gain of temperature by a particle must be small. The diffusion of heat in 
water at room temperature (Dk)/c ,  which will be denoted by E for the remainder 
of the paper, can be computed to be no greater than For such a case it is 
reasonable to expect that the quasi-steady solution-that is, the one in which 
each particle exhibits a steady average temperature-will also be one in which 
the temperature of any particular particle is effectively constant during the 
motion. 

In  the following section a perturbation analysis is developed and it is proved 
that the fluctuations in the temperature of a particle are indeed of order 8. 
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Furthermore a zeroth order solution to the temperature field is constructed 
which is a uniformly valid approximation to the average temperature of each 
particle. The error is again of order e. 

3. The zeroth-order approximation 
If e in (2 .2 )  is set equal to zero any time-independent temperature field will be 

a solution of the equation. This is just a reflexion of the physical consideration 
that loss or gain or thermal energy to a particle in our model can only be by 
molecular diffusion. When this mechanism is removed every particle retains a 
constant temperature no matter how it is transported by the velocity field. Thus 
the proper goal of this investigation is to find a zeroth-order solution which is a 
uniformly valid approximation to the limit as e approaches zero of the solution 
to the full equation ( 2 . 2 ) .  This can be achieved in the following way. 

The temperature field is expanded in the form 

m m 

T(a,P,7) = C fn(P)CoSn(a+T)+ C gn(P)sinn(a+T), (3.1) 
n=O n=O 

where we have used the fact that in the quasi-steady case T must be a periodic 
function of (a + 7). Substituting this series form into the governing equation ( 2 . 2 )  
and collecting coefficients of the same harmonic function we find the general 
terms are of the form 

9,fP) = - +Pf,  + LJ”f,-1+ LP)fn+1}, (n b 1 ) ;  (3.2) 

f,(P) e(L,Cm)gn +LJn)gn-l +L$m)gn+l)> (n 2 1); (3.3) 
where hin) = ( 1  - e2fl)-3{( 1 - e4p)([d2/d/32] - n2) + 4e21(d/dP)}, 

Lp) = eb( 1 - e2fl)-2( - ([d2/dp2] + [n - 112) + 2(n - 1 ) (  [ d /dP]  + e2b[1 - e21]-1) 

- 2e2P( 1 - e ~ ~ ) - l [ d / d p ] } ,  
and 

LJn) = ep( 1 - e28)-2{ - ([dz/dP2] + [n + 1 1 2 )  + 2(n + 1)( [d/dP] + e2b[1 - e2B1-1) 

- 2e2P( 1 - e21)-1 [d/dP]}. 
Also go = 0, (3.4) 

and fo satisfies Lpfo = - L$0)fl. (3.5) 

g ,  = - €{Lpf1  + L p f 0  + T‘Jl ) f2} ,  (3.6) 

fi = “Lpg,  + L$l)g,}. (3.7) 

(3.8) 

In  particular from (3.2), (3.3) and (3.4), g ,  andf, satisfy the following equations: 

By taking the mean of (3.1) we deduce from (2.3) and (2.4) the following boundary 
conditions : 

The operattors Liyl, are independent of e and are well behaved except at  P = 0. 
The P = 0 surface exhibits a physically unrealistic cusp as can be seen from 
figure 1 and we exclude it from consideration as a possible upper surface of the 
layer. For P c 0, since f, and g, are at  moat finite for all n, it  follows from (3.6) 

f o ( P 1 )  = Tl, f O ( P 2 )  = T2. 

(3.9) 
and (3.7) that 

f l  = O(4, 91 = O ( 4 -  
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Also from (3.2), (3.3) and (3.9) we have 

fn = O[(n- 1)2~n], gn = O[(n-  l),~"], (n > 1). 

It can also be demonstrated that 
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(3.10) 

(3.11) 

which, when combined with (3.10), shows that the Fourier series (3.1) is also a 
possible perturbation series and that in the limit as E approaches zero, summation 
of the time dependent terms of the series are of order E .  

Clearly, therefore, f o ( p )  is the zeroth order solution we are seeking. From (3.1) 
it  is evident that f o ( p )  is the average temperature of any particle which lies on a 
constant p surface and the physical meaning of (3.11) is that the fluctuation in 
particle temperature about its average value is O ( E )  as E +  0, a result which could 
have been anticipated on physical grounds. But, as we show in the following 
paragraph the preceding construction also suggests an approximation to fo(/?) 
which is accurate to O(E) .  

Temperature projile 

In  (3.5) the right-hand side is O(s)  and writing To@) for the zeroth approximation 
tofo(P) we have from (3.5) and (3.8) 

L$o)To(/3) = 0, To(pl) = Tl, T0(p2) = T,. 

Integration is straightforward and yields as a solution 

and 

Tl-To(P) - In (cosh&/coshp) 
In (cosh P,/cosh p,) 

T1- T2 (1 - e2j) 

- 
Tl - T, 

= - In (cosh Pl/cosh p,) (1 + e2j) ' 

(3.12) 

(3.13) 

(3.14) 

If further terms in the approximation series are calculated in the fashion sug- 
gested in Q 4 it is found that the error in approximating f o ( p )  to TO(P) is of order 
c2 uniformly, including the bounding surfaces, provided that, as was mentioned 
previously, p = 0 is excluded as a possible surface. The basic solution (3.13) also 
satisfies the boundary condition (3.8) identically so that the problem as posed 
here does not give rise to a singular perturbation. The surface layers are in fact 
indistinguishable from any other constant p surface in the interior of the fluid. 
If boundary conditions are imposed which alter this fact, for example if specified 
fluctuations in temperature are demanded of surface particles, then presumably 
some type of surface thermal boundary layer may be expected but its significance 
remains to be explored and is outside the scope of this paper. 

The solution (3.13) is displayed in figure 2 for the special case pl+ 0, p2 = - 3 
and its Eulerian counterpart is indicated by the temperature profiles super- 
imposed on the Gerstner wave of figure 1. It is of some interest to determine to 
what extent this solution differs from that of pure conduction through a station- 
ary layer of the same geometry. To determine such a solution we could again 
employ the transformation (2.1) with c = 0. The steady temperature profile 



300 Edward E.  O’Brien 

would then be one that satisfies the right-hand side of (2.2) with r = 0. It is im- 
mediately evident that the solution will be a function of a as well as p or in other 
words constant ,B surfaces are no longer isothermal surfaces. We have carried out 
an analogue solution of this steady-state conduction problem using conducting 
paper and a comparison of the isothermal surfaces so obtained with constant /3 
surfaces is presented in figure 3. 

0.90 l.OO E / 
.,g 0-70 
E 
& 
8 0.60 

+a 

a, 4 0.50 
E 
8 ‘ 0.40 
h2 

I 
0.30 

3 
K 
I 0.20 

hi 

0.10 

0 -50 -1.00 -1.50 -2.00 -2.50 -3.00 
P, dimensionless Lagrangian depth 

FIGURE 2. Temperature profile for Gerstner wave: (PI + 0, PZ = - 3). 

Evaluation of heat JEux 

Since ,/3 = ,B1 is a free surface the instantaneous heat flux Q through a wavelength 
of surface of unit width is given by the integral 

where gi is the unit vector normal to the surface, xi is the Eulerian position vector 
of the surface, and all quantities are to be evaluated at  P = P1. 

We find after some manipulations (O’Brien 1965) that the heat flux correspond- 
ing to the temperature field (3.13) is given by 

Q = - 2n-D(T1- T,){ln (coshP,/coshP,))-l. (3.15) 
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It is useful to compare such a heat flux with the flux one would observe through 
an equivalent slab; that is, a quiescent film obtained by allowing the wavy film 
to come to rest. If b = b, is the wave surface then the height of the equivalent 
quiescent surface is given by y = y,, where b,- y1 = (2k)-leZkbl. If Ay is the 
dimensionless equivalent slab depth corresponding to the surfaces p = p1 and 
p = p2 we have 

Ay = k(y,-y,) = pl-,8,-$(ezj1-e2Pz). 

o= % Temperature drop 

e= 37 

e= 57.4 

The heat fluxlunit wavelengthlunit width through such an equivalent slab is 
given by 

and thus finally 

Xome numerical results for large-amplitude waves 

Consider the maximum amplitude wave which occurs when p, approaches zero. 
Then 

&/&slab+ (Pz+&[1-e2p21)/(-lncoshlB2). 
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For b2 = - 1 or b = h/2n, where h is the wavelength, (3.15) predicts a heat flux 

ratio of 1.31, for p2 = -2 ,  &/Qslab = 1.15, 

and for p2 = -3, = 1-08. 

When p2 = 2n the depth b equals the wavelength and &/QSlab = 1-03. 

limit 
A maximum heat flux occurs at PI .+ 0, pz -+ 0, P2 < /Il < 0 and we find in this 

&/&slab -+ 2. 

Hence, as one would expect, the maximum heat-flux increase is for a thin 
ribbon of wavy film of maximum amplitude and the flux in this case is just 
doubled. 

Therefore, for a Gerstner wave, 1 < (&/Qslab) < 2. 
This is in fact a purely geometric result. At ,8 = 0 the surface length of the 

Gerstner wave is simply 42h and therefore for a thin ribbon the depth as compared 
to a slab is decreased by a factor 4 2 .  Thus the fluxlunit wavelength is precisely 
doubled. 

4. Extensions 

example, an approximation to gl(,4), which is accurate to O(e) is, from (3.6), 
The higher-order approximations can be determined from (3.2) and (3.3). For 

S l W  = - 4 ” f o ( P ) ,  
andfrom (3.7)itisevident thatf, = O(e2).  Theseresultscaninturnbeusedtoobtain 
the second-order approximation T2(P) to fo(/3), [the first-order approximation 
TI(@) To((p)], and improved estimates of flux could be made. Since the correc- 
tions are uniformly of order €2 and e2 is typically O( lo-*) for liquids it seems to be 
unnecessary to construct solutions of better than zeroth-order accuracy. It is also 
possible (O’Brien 1965) to construct a more general Lagrangian description which 
includes the Gerstner wave as a special case and which is also an accurate 
representation of gravity waves of moderate slope. The zeroth-order approxima- 
tions to the temperature field and heat flux can be deduced in a manner entirely 
analogous to the method used above and one interesting result is that mentioned 
in the last paragraph of the introduction. 

The simple approximation developed in 5 3 depends on the smallness of e which 
can be written as Dk2/ek and which is clearly the ratio between the time scale for 
a particle period and the time scale associated with molecular diffusion over a 
diameter of the largest particle orbit. It should be equally as applicable to esti- 
mating unsteady transfer of heat across the same kinds of waves provided that 
the time scale of a particle period is very much less than the time scale associated 
with the change of the average temperature of any particle in the layer. Speci- 
fically, if the average surface temperature is made time-dependent but with a 
large time scale relative to a particle period then the arguments of $ 3  will hold 
locally in time. The coefficientsfn(,4) and g,(P) will now be time-dependent with 
respect to the longer time scale and there will be a contribution from the time 
derivative on the left-hand side of ( 2 . 2 )  which will account for the change in the 
average temperature of particles. 
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The consequences to the zeroth-order approximation are predictable. It now 
must satisfy 

T ,  (8, t )  = Dk2 J-3LI0)T(P, t ) ,  

T(P,,t) = T(P2,t) = T2(t), 
T(P, 0) a prescribed function. 

The solution of such a problem is routine. A typical example has been computed 
in detail (O’Brien 1965). 

A similar extension of the solution is evidently possible in the event that the 
average temperature field of the particles is not homogeneous in the horizontal 
plane provided only that the length scale of any inhomogeneity is very much 
larger than a wavelength of the wave. 

5. Conclusion 
It has been shown that progressive waves on a thin layer of fluid can augment 

the flux of heat through the layer. The significant physical feature, for fluids in 
which (Dk)/c  is sufficiently small, is that the fluid particles maintain an almost 
constant temperature in their orbital motion. 

By adopting a Lagrangian description of the wave-motion an accurate zeroth- 
order approximation to the temperature field of the wave is obtained for the case 
of constant average surface temperatures. The related flux results are in quali- 
tative agreement with Nusselt’s (1923) remarks concerning the role of waves in 
increasing the flux of heat through a liquid layer. 

The problem studied here was originally suggested by Professor Walter S. 
Bradfield, and Mr Tore Omholt carried out many of the calculations of $3 2 and 3. 
The author is grateful for their participation and for the numerous discussions of 
the problem carried on with Dr Michael Bentwich. This work was supported 
by National Science Foundation Grant no. 31-82. 
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